Oduor Edwin

Question 2: Time series Project

Import the required libraries

```
: import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import datetime
```

Read the csv file from your working directory

```
# read in the necessary file ('clean_stock_prices.csv')
df = pd.read_csv('cleaned_stock.csv',index_col=0)
df.head()

EGAD KUKZ LIMT SASN WTK CGEN ABSA BKG DTK EQTY ... BAT CARB EABL EVRD FTGH ORCH MSC UNGA SCOM FAHR
Date

2022-
01-13 12.90 385.0 320.0 22.20 130.00 54.00 11.80 30.00 59.00 49.55 ... 440.0 10.80 151.50 0.96 1.34 10.4 0.27 27.10 37.95 6.52

2022-
01-11 13.80 385.0 320.0 20.55 134.75 44.75 11.90 30.75 59.50 52.00 ... 445.0 10.85 161.00 0.88 1.31 10.4 0.27 27.65 38.45 6.56

2022-
01-07 13.80 420.0 320.0 21.25 132.00 37.05 11.80 29.05 60.00 53.00 ... 442.0 10.90 164.75 0.94 1.30 10.4 0.27 27.65 39.90 6.38

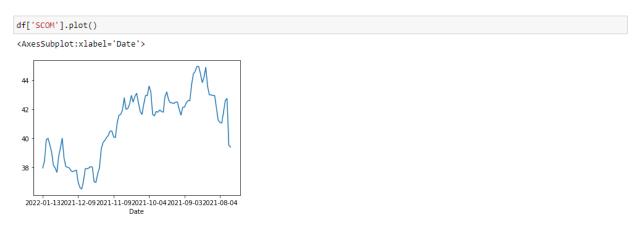
2022-
01-06 13.80 420.0 320.0 20.25 130.75 33.70 11.80 29.30 60.00 53.00 ... 442.0 10.90 160.75 0.99 1.29 10.4 0.27 27.65 40.00 6.40

2022-
01-06 12.85 420.0 320.0 19.95 130.75 30.60 11.75 29.50 59.75 53.00 ... 442.0 10.90 163.75 0.99 1.26 10.4 0.27 27.65 39.55 6.02
```

5 rows × 60 columns

Obtain the lowest price for Safaricom (SCOM)

```
: #Lowest price for Safaricom


df = pd.read_csv('cleaned_stock.csv')
min1 = df['SCOM'].min()
min1
: 36.5
```

Obtain the highest price for Safaricom (SCOM)

```
# highest price for Safaricom

df = pd.read_csv('cleaned_stock.csv')
max1 = df['SCOM'].max()
max1
```

Plot a graph for Safaricom(SCOM) shares

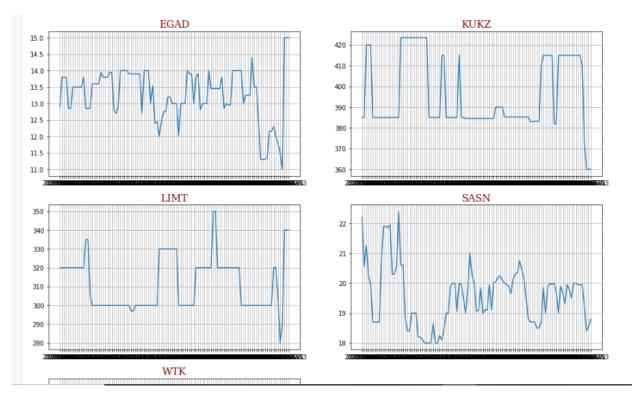
Subseting Agric sector

```
agric_df = df.loc[:,'EGAD':'WTK'].copy()
agric_df.head()

EGAD KUKZ LIMT SASN WTK

Date

2022-01-13 12.90 385.0 320.0 22.20 130.00

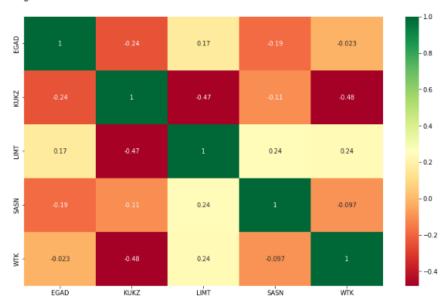

2022-01-11 13.80 385.0 320.0 20.55 134.75

2022-01-07 13.80 420.0 320.0 21.25 132.00

2022-01-06 13.80 420.0 320.0 20.25 130.75

2022-01-05 12.85 420.0 320.0 19.95 130.75
```

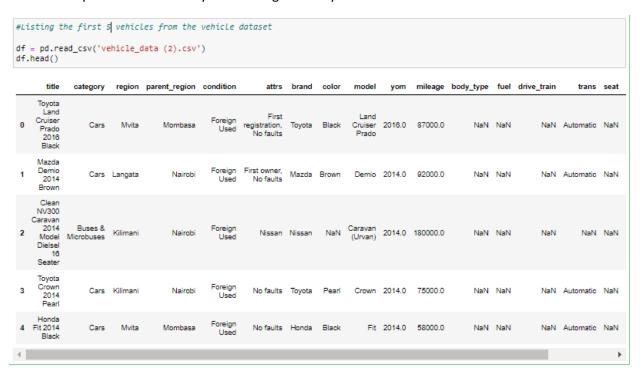
using matplotlib subplot to create subplots to fit all the sector stocks in one plot.



Use Seaborn to plot the correlation plot for your sector stocks.

```
corr_df = agric_df.corr(method="pearson")

plt.figure(figsize=(13, 8))
sns.heatmap(corr_df, annot=True, cmap='RdYlGn')
plt.figure()
```



<Figure size 720x360 with 0 Axes>

Question 1. Vehicle Dataset

Import the necessary libraries

```
import os
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

Read the required CSV file from your working directory

The titles and prices of 10 Cars with highest price

```
#Titles and prices of 10 cars with the highest price

df[df['category']=='Cars'].sort_values(by='price', ascending=False).head(10).loc[:,['title','price']]
```

	title	price
22	Lexus RX 2016 Black	14500000
265	New Hyundai Palisade 2021 White	9500000
224	Toyota Hilux 2016 Black	9000000
156	Toyota Land Cruiser 2010 4.6 V8 ZX Black	8799999
249	Toyota Land Cruiser 2014 4.6 V8 ZX Black	8199999
53	Toyota Land Cruiser Prado 2015 2.7 VVT-i Brown	6500000
0	Toyota Land Cruiser Prado 2016 Black	6500000
241	BMW X5 2015 White	6300000
177	Toyota Land Cruiser Prado 2014 Blue	6150000
8	BMW X4 2015 xDrive35i Black	5800000

The titles and prices of 5 Buses & Microbuses with highest price

The titles and prices of 5 Trucks & Trailers with highest price

```
#Titles and prices of 5 trucks and trailers with highest price

df[df['category']=='Trucks & Trailers'].sort_values(by='price', ascending=False).head(5).loc[:,['title','price']]

title price

195 Mercedes-Benz Actros 7500000

222 Tata Signa LFK-1618 Tipper 10 Ton 6000000

103 Shacman F2000 Tipper 5100000

176 Isuzu Forward 7 Tonne Freezer 4300000

62 Isuzu Elf,Year 2015 Manual 3650000
```

Regions with the highest number of vehicles from the vehicle dataset

```
: #Regions with the highest number of vehicles
 df['region'].value_counts()[:10]
Mombasa CBD 92
 Mvita
                   28
 Nairobi Central 27
 Kilimani
                   23
 Lavington
                   16
 Ridgeways
                   15
 Tudor
                   13
 Karen
 Langata
 Nairobi
 Name: region, dtype: int64
```

Create a variable for regions with the highest number of vehicles

```
: #Creating a variable for top 10 regions with the highest number of vehicles

top_10 = df['region'].value_counts()[:10]
```

Use matplotlib to come up with a plot indicating the top 10 brands that we have in the vehicle_dataset

```
#Using Matplotlib to come up with a graph of top 10 regions with the highest number of vehicles

plt.figure(figsize=(12,8))
plt.title("Top 10 regions with the highest number of vehicle")
fontsize = 14
fontneight = 'bold'
top 10.plot.ber()
plt.xlabel("Number of Region", fontsize = 12, fontweight = 'bold')
plt.xlabel("Number of vehicle", fontsize = 12, fontweight = 'bold')
plt.grid()

Top 10 regions with the highest number of vehicle

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of vehicle*

**Top 10 regions with the highest number of
```

Name of Region